Differential Effects of DPP-4 Inhibitors, Anagliptin and Sitagliptin, on PCSK9 Levels in Patients with Type 2 Diabetes Mellitus who are Receiving Statin Therapy.

Department of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University School of Medicine. Caress Sapporo Hokko Memorial Clinic. Department of Clinical Epidemiology, Hyogo College of Medicine. Department of Diabetes, Endocrinology and Metabolism, Fukushima Medical University. Department of Diabetes, Metabolism and Endocrinology, International University of Health and Welfare Ichikawa Hospital. Department of Cardiology, Tomishiro Central Hospital. Department of Cardiovascular Medicine, Saga University. Department of Pharmacology and Therapeutics, University of the Ryukyus.

Journal of atherosclerosis and thrombosis. 2022;(1):24-37

Abstract

AIM: Proprotein convertase subtilisin/kexin type 9 (PCSK9) degrades the low-density lipoprotein (LDL) receptor, leading to hypercholesterolemia and cardiovascular risk. Treatment with a statin leads to a compensatory increase in circulating PCSK9 level. Anagliptin, a dipeptidyl peptidase-4 (DPP-4) inhibitor, was shown to decrease LDL cholesterol (LDL-C) levels to a greater extent than that by sitagliptin, another DPP-4 inhibitor, in the Randomized Evaluation of Anagliptin versus Sitagliptin On low-density lipoproteiN cholesterol in diabetes (REASON) trial. We investigated PCSK9 concentration in type 2 diabetes mellitus (T2DM) and the impact of treatment with anagliptin or sitagliptin on PCSK9 level as a sub-analysis of the REASON trial. METHODS PCSK9 concentration was measured at baseline and after 52 weeks of treatment with anagliptin (n=122) or sitagliptin (n=128) in patients with T2DM who were receiving statin therapy. All of the included patients had been treated with a DPP-4 inhibitor prior to randomization. RESULTS Baseline PCSK9 level was positively, but not significantly, correlated with LDL-C and was independently associated with platelet count and level of triglycerides. Concomitant with reduction of LDL-C, but not hemoglobin A1c (HbA1c), by anagliptin, PCSK9 level was significantly increased by treatment with sitagliptin (218±98 vs. 242±115 ng/mL, P=0.01), but not anagliptin (233±97 vs. 250±106 ng/mL, P=0.07). CONCLUSIONS PCSK9 level is independently associated with platelet count and level of triglycerides, but not LDL-C, in patients with T2DM. Anagliptin reduces LDL-C level independent of HbA1c control in patients with T2DM who are on statin therapy possibly by suppressing excess statin-mediated PCSK9 induction and subsequent degradation of the LDL receptor.

Methodological quality

Metadata